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Abstract

The evolution of dispersed short-fatigue-cracks is analysed based on the equilibrium of crack-number-density

(CND). By separating the mean value and the stochastic ¯uctuation of local CND, the equilibrium equation of overall

CND is derived. Comparing with the mean-®eld equilibrium equation, the equilibrium equation of overall CND has

di�erent forms in the expression of crack-nucleation-rate or crack-growth-rate. The simulation results are compared

with experimental measurements showing the stochastic analyses provide consistent tendency with experiments. The

discrepancy in simulation results between overall CND and mean-®eld CND is discussed. Ó 1999 Elsevier Science Ltd.

All rights reserved.
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1. Introduction

Generally, the fatigue process of metallic ma-
terials can be identi®ed as two stages: short-crack
regime and long-crack regime (Hussain et al.,
1993; Fang et al., 1995). In the short-crack regime,
cracks keep nucleating and growing within grain
domains, which seldom may overcome grain-
boundary obstacles and develop to be cross-
boundary cracks. With the progress of the fatigue
process, the crack-nucleation-rate keeps decreas-
ing for cracks approaching grain boundaries and a
few short-fatigue-cracks may grow into neighbour
grains. The appearance of a crack with a size large
enough to overcome grain-boundary obstacle ef-

fect characterises the end of the short-crack regime
and the beginning of the long-crack regime. Since
the short-crack regime usually takes up a large
portion of fatigue life, therefore it is in engineering
important to investigate the fatigue damage due to
short crack evolution, so as to assess the reliability
and fatigue life of material under cyclic loading.

During the fatigue damage process, the initia-
tion and the growth of short cracks are always
randomly distributed. In some local areas, short
cracks may densely appear; simultaneously, there
may exist some other areas even without any short
crack damage. This suggests that the collective
damage of short fatigue cracks is a stochastic
feature, which calls for analyses to get a better
understanding for such a process.

In the present paper, we describe the method
of crack-number-density (CND) analysis which
is proposed to deal with the collective crack
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evolution problem. A stochastic consideration is
introduced for both local ®eld and overall ®eld
derivations. The simulation results of stochastic
analyses and mean-®eld theory are obtained, and
compared with experimental measurements. The
discrepancy between stochastic analyses and
mean-®eld theory is discussed.

2. Model of crack-number-density analysis

Considering the collective characteristics exist-
ing in short-crack regime, one may introduce
crack-number-density (CND) to analyse fatigue
damage (Fang et al., 1995; Qiao and Hong,
1998a). Omitting the di�erence in the propensity of
short cracks at separate local areas of material, we
write the non-dimensional mean-®eld equilibrium
equation of CND as

o
ot

�n0�c; t� � o
oc

�A
0�c��n0�c; t�

h i
� Ng�n0N�c�; �1�

where �n0�c; t� is mean-®eld CND, with �n0�c; t� dc
being the number of cracks with length between c
and c + dc at time t; �A

0�c� is average crack-growth-
rate; and �n0N�c� is average crack-nucleation-rate.
All of these physical quantities are normal-
ized and the non-dimensional coe�cient Ng �
�n�Nd�=�n�A��, with n�N being the characteristic
crack-nucleation-rate, A� the characteristic crack-
growth-rate, n� the characteristic CND and d the
characteristic dimension of the material concerned
(e.g. the grain diameter). Eq. (1) describes the
equilibrium of CND in phase space. The second
term on the left side describes the ¯ow of CND,
which is attributed to crack growth; and the term
on the right side describes the contribution to
CND made by crack nucleation.

The evolution process of mean-®eld CND was
derived by solving Eq. (1) and thus the relevant
damage parameters, such as the maximum crack
length and the total number of short-fatigue-
cracks, were discussed (Fang et al., 1995; Qiao and
Hong, 1998a; Hong and Qiao, 1998). These dam-
age parameters were introduced to illustrate the
extent of material damage. Fig. 1 shows a nu-
merical result of the mean-®eld equilibrium equa-
tion. Through the ®gure we see the dual-peak

distribution of CND, which is in agreement with
the dual-peak feature observed in experiments
(Fang et al., 1995). Note that the above analyses
are focused on mean-®eld case, i.e. di�erent parts
of material are assumed to have the same local
mechanical characteristics. However, in the real
fatigue damage process, there always exists sto-
chastic ¯uctuation of local area behaviour in ma-
terial (Price, 1988; Hong et al., 1989, 1991).

Considering the di�erence in local areas of
material, we introduced the concept of local CND
and obtained the equilibrium equation of local
CND (Qiao and Hong, 1998b):

o
ot

n�c; t; x~� � o
oc

A�c; t; x~�n�c; t; x~�
h i

� NgnN�c; t; x~�; �2�
where x~ is the position of a small area of material,
n�c; t; x~�, A�c; t; x~� and nN�c; t; x~� are local CND,
local crack-growth-rate and local crack-nucle-
ation-rate, respectively. The local area is treated as
small enough to be considered as a point at macro-
scale. On the other hand, the local area also
contains enough short-fatigue-cracks so that the
concept of CND can be applied. It is observed in

Fig. 1. Numerical result for CND evolution of mean-®eld the-

ory, dashed curve representing the saturation distribution.

Ad � 0 and �d � 1 were used in the calculation.
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experiments that a viewed area on specimen sur-
face may comprise a continuous low-damage-ex-
tent area and dispersed high-damage-extent areas
(Price, 1988; Hong et al., 1997). Fig. 2 is a pho-
tograph showing the uneven distribution of short
fatigue cracks. This was taken from the iso-stress
specimen of a low carbon steel subjected to the
fatigue loading of stress ratio R�ÿ1, frequency
f� 11 Hz and rmax � 1:17ry, where rmax is the
specimen surface maximum stress and ry is the
yield stress of the material. Fig. 2 is a typical ex-
ample that during the progression of fatigue
damage, within some grain domains, short cracks
have become densely distributed, whereas some
other ferrite domains remain undamaged without
a single short crack appearing. The experimental
process and the results have been described else-
where (Hong et al., 1989, 1991, 1997). The sto-
chastic appearance of short crack distribution is
schematically illustrated in Fig. 3. Considering
that the interaction of short-fatigue-cracks is weak
in low-damage-extent area, we assume that local
areas are independent of each other. By solving the
equilibrium equation of local CND, and taking
into account the stochastic ¯uctuation of local
crack-growth-rate and local crack-nucleation-rate,
the damage evolution in di�erent small areas of
material was studied. According to experimental

observations, we assumed that local crack-growth-
rate and local crack-nucleation-rate have the fol-
lowing forms, respectively (Qiao and Hong,
1998b):

A�c; t; x~� � A0�c�
h

� L�c�W1�x~�
i

aDb
0l�t; x~�

h i
; �3�

nN�c; t; x~� � nN0�c� � L��c�W2�x~�
h i

pDq
0l�t; x~�

h i
;

�4�
where A0(c) and nN0(c) are respectively the mean
values of local crack-growth-rate and local crack-
nucleation-rate; D0l is number of cracks in local
area; a, b, p and q are material parameters; L and
L� are functions respectively illustrating stochastic
¯uctuation of A and nN; and W1 and W2 are two
white-noise process. Local CND was derived from
Eq. (2), and thus local maximum crack length and
local number of cracks were obtained. Overall
maximum crack length and overall number of
cracks were calculated by analysing the local
damage evolution in each local area. Fig. 4 shows
the results of overall maximum crack length cmax

against normalized time t, where the datum points
are the results of 10 stochastic numerical simula-
tions with the dashed line being the regressed curve
of the stochastic results and the solid line is the
numerical result of mean-®eld theory (Eq. (1)).
The di�erence in the results between mean-®eld
equilibrium equation and the stochastic analyses
becomes evident when t is beyond 1.6. In
other words, the result of stochastic analyses is
almost consistent with that of mean-®eld equation
at the initial stage of damage evolution process
and it becomes smaller than the mean-®eld

Fig. 2. Photograph showing short-fatigue-cracks developed in

some ferrite grains and without crack damage in other ferrite

domains, vertical direction parallel to tensile stress.

Fig. 3. Schematic illustration of dispersed short-fatigue-cracks.
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value at a certain stage of the fatigue evolution
process.

Fig. 5 shows the result of overall maximum
crack length cmax versus overall number of cracks
D0, where the solid curve representing the result of
mean ®eld theory and data points representing the
result of stochastic simulations. It is seen that the
relationship between cmax and D0 has the same
trend for mean ®eld theory and stochastic analysis.
Fig. 5 also indicates that cmax and D0 are approx-
imately linearly correlated.

3. Analyses of overall CND

3.1. Evolution equation of overall CND

The short-crack damage evolution is considered
an ergodic system. Therefore, the equilibrium
equation of overall CND can be derived by inte-
grating the equilibrium equation of local CND.
Let �n�c; t� be CND in a unit area of material.
According to the de®nition of local CND n�c; t; x~�,
we have:

�n�c; t� � 1

S

Z
X

n�c; t; x~� dx~; �5�

where S is the area of integration part X on
specimen surface. If a unit area is regarded as a
local area, then �n�c; t� is just the average CND. It
follows that

n�c; t; x~� � �n�c; t� � ~n�c; t; x~�; �6�

where ~n�c; t; x~� is the stochastic ¯uctuation of local
CND n�c; t; x~�. Local crack-growth-rate A�c; t; x~�
and local crack-nucleation-rate nN�c; t; x~� can also
be written as:

A�c; t; x~� � �A�c; t� � ~A�c; t; x~�; �7�

nN�c; t; x~� � �nN�c; t� � ~nN�c; t; x~�; �8�

where �A�c; t� and �nN�c; t� are respectively the mean
values of A�c; t; x~� and nN�c; t; x~�, and ~A�c; t; x~� and
~nN�c; t; x~� are respectively the stochastic ¯uctu-
ations ofA�c; t; x~� and nN�c; t; x~�. Substituting
Eqs. (6)±(8) into Eq. (2) and integrating in X, we
have

Fig. 5. Relationship between whole ®eld maximum crack size

and total number of short cracks, solid curve representing result

of mean-®eld theory, data points representing result of sto-

chastic simulations.

Fig. 4. Results of overall maximum crack length against time

derived by mean-®eld theory and stochastic analyses. Data

points showing results of stochastic simulations with dashed

line as regressed curve and solid line being the result of mean-

®eld theory.
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o�n�c; t�
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� 1

S

Z
X

o~n�c; t; x~�
ot

dx~

�
o �A�c; t��n�c; t�
h i

oc
� 1

S

Z
X

o �A�c; t�~n�c; t; x~�
h i

oc
dx~

� 1

S

Z
X

o ~A�c; t; x~��n�c; t�
h i

oc
dx~

� 1

S

Z
X

o ~A�c; t; x~�~n�c; t; x~�
h i

oc
dx~

� Ng�nN�c; t� � 1

S

Z
X

Ng~nN�c; t; x~� dx~: �9�

Note that for an ergodic systemZ
X

~n�c; t; x~� dx~� 0; �10�

Z
X

~A�c; t; x~� dx~� 0; �11�

Z
X

~nN�c; t; x~� dx~� 0: �12�

Substitution of Eqs. (10)±(12) into Eq. (9) gives

o�n�c; t�
ot

�
o �A�c; t��n�c; t�
h i

oc

� Ng�nN�c; t� ÿ
o ~A�c; t; x~�~n�c; t; x~�
h i

oc

0@ 1A; �13�

where

o ~A�c; t; x~�~n�c; t; x~�
h i

oc

0@ 1A
� 1

S

Z
X

o ~A�c; t; x~�~n�c; t; x~�
h i

oc

8<:
9=; dx~: �14�

Eq. (13) is the equilibrium equation of overall
CND, which shows the equilibrium of overall

CND in phase space with local CND ¯uctuating in
di�erent local areas.

3.2. Fluctuation in¯uence term

Comparing Eq. (13) with Eq. (1), we see that
there appears, in the equilibrium equation of overall

CND, a new term ÿ o ~A�c; t; x~�~n�c; t; x~�� �
=�oc�ÿ �

,
which we call the ¯uctuation in¯uence term (FIT)
in the following. FIT represents the e�ects of the
stochastic ¯uctuation of local damage on overall
damage and it is caused by the non-linear re-
sponses in the damage evolution process. The
comparison of Eq. (13) with Eq. (1) suggests that
FIT is the cause of the deviation of stochastic
analyses from mean-®eld theory shown in Fig. 4.

Referring to the de®nition of Eq. (14), we may
write FIT as

ÿ
o ~A�c; t; x~�~n�c; t; x~�
h i

oc

0@ 1A
� ÿ o

oc
1

S

Z
X

~A�c; t; x~�~n�c; t; x~� dx~

24 35: �15�

According to Eqs. (10) and (11), the mean values
of ~A�c; t; x~� and ~n�c; t; x~� are zero. Thus the func-
tion in the brackets on the right side of above
equation is the covariance of ~A�c; t; x~� and ~n�c; t; x~�.
Here we write it as l�c; t�. In general,

l�c; t� � q�c; t�rA�c; t�rn�c; t�; �16�
where rA�c; t� is the standard deviation of local
crack-growth-rate A�c; t; x~�; rn�c; t� is the standard
deviation of local CND n�c; t; x~� and q�c; t� is the
correlation coe�cient between A�c; t; x~� and
n�c; t; x~�. Substituting Eqs. (15) and (16) into (13),
the equilibrium equation of overall CND becomes:

o�n�c; t�
ot

�
o �A�c; t��n�c; t�
h i

oc

� Ng�nN�c; t� ÿ ol�c; t�
oc

� Ng�nN�c; t� ÿ o
oc

q�c; t�rA�c; t�rn�c; t�� �: �17�
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One may notice that if jq�c; t�j � 0, Eq. (17) re-
duces to the form of Eq. (1) and the result of
stochastic analyses is the same with that of mean-
®eld theory.

In order to discuss the response of FIT with the
evolution equation of overall CND, we de®ne the
e�ective crack-growth-rate as

Â�c; t� � A�c; t; x~�n�c; t; x~�
�n�c; t�

�
�A�c; t��n�c; t� � ~A�c; t; x~�~n�c; t; x~�

�n�c; t� ; �18�

where

A�c; t; x~�n�c; t; x~� � 1

S

Z
X

A�c; t; x~�n�c; t; x~� dx~:

Substitution of Eq. (18) into (13) gives another
form of the equilibrium equation of overall CND:

o�n�c; t�
ot

�
o Â�c; t��n�c; t�
h i

oc
� Ng�nN�c; t�: �19�

Eq. (19) implies that the deviation of stochastic
analyses from mean-®eld theory may also be at-
tributed to the di�erence between e�ective crack-
growth-rate Â�c; t� and average crack-growth-rate
�A�c; t�.

3.3. Comparison with experimental results

Our previous experimental investigation of a
low carbon steel indicated that the progression of
short-fatigue-cracks is a collective evolution pro-
cess with the gradual increase in crack number
per unit area with increasing number of fatigue
cycles (Hong et al., 1997). Our recent experi-
mental work again revealed the collective damage
evolution of short fatigue cracks for a stainless
steel. Fig. 6 shows the variation of the total
number of short cracks D0 with the normalized
number of fatigue cycles N=Nf for two kinds of
specimen conditions with average grain sizes of 72
and 207 lm. The two data sets give a similar
trend between D0 and N=Nf in spite of their large
di�erence in grain size. The determinations also
indicated that the short crack regime takes up as
much as 87% of total fatigue life. The detailed

procedure and results were reported recently
(Hong et al., 1998, 1999).

Referring to the linear correlation between cmax

and D0 indicated by Fig. 5 and noting that the
normalized time t is associated with normalized
fatigue cycles N=Nf , one may evaluate that the
variation trend of cmax with t is equivalent to that
of D0 with N=Nf . Thus, we see the evidence that the
variation tendency between cmax and t given by
stochastic simulations shown in Fig. 4 is consistent
with that of the experimental results shown in
Fig. 6. The solid curve, plotted in Fig. 4 obtained
by mean-®eld theory, overestimates the collective
short crack evolution when t tends to a large value.

4. E�ect of ¯uctuation in¯uence term

Subtracting Eq. (13) from Eq. (2) gives the
evolution equation for stochastic ¯uctuation of
local CND:

o~n�c; t; x~�
ot

� o
oc

�A�c; t�~n�c; t; x~� � ~A�c; t; x~��n�c; t�
h i

� Ng~nN�c; t; x~�: �20�
It is clear that, from Eq. (20) and Eq. (13), the
mean value and the stochastic ¯uctuation of
overall CND interact each other. To obtain them
one needs to study Eqs. (13) and (20) together,

Fig. 6. Total number of short cracks D0 versus normalized

number of fatigue cycles N=Nf for a stainless steel with two

grades of grain size.
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which is relatively complicated and di�cult. If FIT
can be simpli®ed by simulation methods, then
overall CND may be derived from Eq. (13) inde-
pendently.

In our previous analyses (Qiao and Hong,
1998a, b), damage extent was assessed having little
e�ect on crack-growth-rate. Hence, we assume
that local crack-growth-rate is independent of time
t:

A � A�c; x~�: �21�
On the other hand, Eq. (13) implies that overall
CND is not in¯uenced by the stochastic ¯uctua-
tion of local crack-nucleation-rate, because the
crack-nucleation-rate is a linear term in the equi-
librium equation. Therefore, the stochastic ¯uctu-
ation of nN�c; t; x~� will be omitted in the following
derivation. Note also that the crack-growth-rate
tends to a constant level with the progress of fa-
tigue process (Suh et al., 1992). Consequently,
Eq. (13) reduces to:

o�n�c; t�
ot

�
o �A�c��n�c; t�
h i

oc

� Ng�nN�c� ÿ
o ~A�c; x~�~n�c; t; x~�
h i

oc

0@ 1A: �22�

The second term on the right side of above equa-
tion may be investigated by using the analytic so-
lution of Eq. (2) (Ke et al., 1990):

n�c; t; x~� � 1

A�c; x~�
Zc

g�c;t;x~�

NgnN�c0; x~� dc0; �23�

where the de®nition of lower integral boundary
g�c; t; x~� is that for a crack with an initial length of
g�c; t; x~� at t� 0, its length will advance to c at time
t under the growth rate of A�c; x~�. Eq. (23) suggests
that there is a saturation distribution in the evo-
lution process of local CND, i.e. with the progress
of the fatigue process, the distribution of local
CND gradually tends to a local saturation curve
from a small to a large value of crack length (also
see Fig. 1). It is obvious that the saturation curve
presents the stable distribution of CND. Referring
to Eq. (23), we may write the local saturation
curve as:

n0�c; x~� � 1

A�c; x~�
Zc

0

NgnN�c0; x~� dc0: �24�

At the stage that the fatigue damage fully devel-
oped, assume local CND be of the trend with
its distribution approaching to the saturation
curve. Letting the mean value and the stochastic
¯uctuation of saturation local CND be �n0�c�
and ~n0�c; x~�, respectively, from Eq. (24), one may
write

~n0�c; x~� � ~B�c; x~�
Zc

0

NgnN�c0� dc0; �25�

where ~B�c; x~� is the stochastic ¯uctuation of
1=A�c; x~�. Then, we have

~A�c; x~�~n0�c; x~� � ~A�c; x~� ~B�c; x~�
Zc

0

NgnN�c0� dc0;

�26�
where ~A�c; x~�~n0�c; x~� is the mean value of

~A�c; x~�~n0�c; x~� and ~A�c; x~� ~B�c; x~� is the mean value
of ~A�c; x~� ~B�c; x~�. Note that

~A�c; x~� ~B�c; x~� � ~A�c; x~� 1

~A�c; x~�

 !
ÿ �A�c� 1

A�c; x~�

0@ 1A
� 1ÿ �A�c� 1

A�c; x~�

 !
: �27�

Replacing local CND n�c; t; x~� with the saturation
curve n0�c; x~� (Eq. (24)) in Eqs. (26) and (27), and
referring to Eq. (15), we can show FIT in the fol-
lowing form:

ÿ ol
oc
� o

oc
�A�c� 1

A�c; x~�

 !24 35Zc
0

nN�c0� dc0

ÿ nN�c� 1

24 ÿ �A�c� 1

A�c; x~�

 !35: �28�

Assume that the distribution of local crack-
growth-rate is a logarithm normal function, i.e. the
probability for A�c; x~� � m is
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f �m� �
1����

2p
p

r0�c�m exp ÿ ln mÿl0�c�� �2
2r02�c�

� �
�m P 0�;

0 �m < 0�;

8><>:
�29�

where r0�c� and l0�c� are distribution parameters
determined by crack length c. The mean value of
f �m� is

E�c� � �A�c� � exp l0�c�
�

� r02�c�
2

�
�30�

and the variance of f �m� is

D�c� � exp 2l0�c� � r02�c�� �
exp r02�c�� �ÿ 1
� 	

:

�31�
Through Eqs. (29) and (30), one derives

1

A�c; x~�

 !
�
Z1

0

1

m
f �m� dm

� exp
r02�c�

2

�
ÿ l0�c�

�
� 1

�A�c� exp r02�c�� �
: �32�

Substitution above equation into (28) gives:

ÿ ol�c�
oc
� nN�c� er02�c�

h
ÿ 1
i

� 2r0�c�er02�c�
Zc

0

nN�c0� dc0

8<:
9=; or0�c�

oc
:

�33�
Thus, the equilibrium equation of overall CND
(Eq. (22)) can be solved independently by using
Eq. (33). Here we assume that r0�c� and nN(c) have
the following forms:

r0�c� � a exp�bc�; �34�

nN�c� � 1ÿ c
2
�c6 2�;

0 �c > 2�;
�

�35�

where a and b are constants. Eq. (35) comes from
previous experimental observations and it shows
that smaller fatigue cracks nucleate easier (Qiao
and Hong, 1998a).

Since the di�erence between stochastic analyses
and mean-®eld theory comes from the term of FIT
in Eq. (13), the following discussions will concen-
trate on the characteristics of FIT. Fig. 7 illus-
trates the tendency of FIT varying with di�erent
values of c and b. It is seen that FIT is slightly
larger than zero at the negative part of b-axis. If
crack length c is relatively large, there appears a
negative peak of FIT at the positive end of the
b-axis.

It is derived that r0�c� as a function of �A�c� and
D(c) from Eqs. (30) and (31):

r0�c� �
��������������������������������
ln 1� D�c�

�A
2�c�

" #
:

vuut �36�

De®ne a parameter Q as

Q � 1

2

o ln D�c�� �=oc

o ln �A�c�
h i

=oc
: �37�

According to Eq. (37), we see that if Q > 1, i.e. the
variation extent of D�c� is faster than that of �A

2�c�,
the variation tendency of r0�c� is of the same trend
with that of �A�c�. Thus, because of the decelera-
tion±acceleration pattern of short-fatigue-crack
evolution (Fig. 8; Lankford, 1982), one may deter-
mine that in the short-crack regime or0�c�=oc < 0
(b < 0) and in the long-crack regime or0�c�=oc > 0
(b > 0). Therefore, in Fig. 7, the process that b
varies from ÿ1 to 1 corresponds to the process

Fig. 7. Variation of FIT as a function of c and b.
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that fatigue damage develops from the short-crack
regime into the long-crack regime.

At the initial stage of the fatigue process, fa-
tigue damage is within the short-crack regime, thus
FIT is at the negative part of b-axis. From Fig. 7,
it is observed that FIT is somewhat larger than
zero, which implies that the result of stochastic
analyses should be slightly larger than the result of
mean-®eld theory. With the progress of the fatigue
process, dispersed fatigue-cracks develop into
long-crack regime, thus FIT develops to the posi-
tive part of b-axis, where the negative peak of FIT
in the region of large values of crack length c may
intensively suppress the propagation of cracks.
Therefore, at the end of the short-crack regime and
in the whole long-crack regime, the damage extent
derived by stochastic analyses may be much
weaker than by mean-®eld theory. The above
discussion interprets the di�erence between sto-
chastic analyses and mean-®eld theory shown in
Fig. 4, in which the data points represent random
processes with Q > 1.

5. Conclusions

By integrating the equilibrium equation of local
CND, the equilibrium equation of overall CND is
obtained and the following conclusions are
drawn:

(1) Overall damage evolution is in¯uenced
by the stochastic ¯uctuation of the local crack-
growth-rate. The in¯uence extent may be described
by the standard errors of local crack-growth-rate
and local CND, and their correlation coe�cient.

(2) The di�erence between stochastic analyses
and mean-®eld theory comes from the ¯uctuation
in¯uence term related to the stochastic ¯uctuation
of crack-growth-rate. Overall damage evolution is
independent of the stochastic ¯uctuation of crack-
nucleation-rate.

(3) At the initial stage of fatigue process, the
damage extent derived by stochastic analyses is
slightly larger than that derived by mean-®eld
theory and at the following stage of fatigue process
the result of stochastic analyses is smaller than that
of mean ®eld theory. The tendency of simulation
results by stochastic analyses is consistent with
experimental measurements.
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