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Abstract. In this paper, the conformal mapping method was adopted to solve the problem of an infinite plate
containing a central lip-shaped crack subjected to remote biaxial loading. A kind of leaf-shaped configuration was
also constructed in order to solve the problem. The analytical result showed that the singularity order of the stress
field at the tip of a lip-shaped crack remaind/2, despite the difference in notch-crack width.
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1. Introduction

According to Williams (1952; 1957) and Irwin (1957), the singularity order of the stress field
at the tip of a planar crack loaded under plane-strain mode | conditier%,isand the stress
intensity factork is introduced to characterize the stress concentration. These concepts have
become the basis of Linear Elastic Fracture Mechanics (LEFM), which has been widely used
in theoretical analyses and engineering applications.

It is noted that there are some reasons for omitting terms with a higher singularity order in
the LEFM derivations. These reasons (Hui, 1995) are:

(1) the strain energy in the region of the crack tip must be bounded;

(2) the displacement in the region of the crack tip must be bounded;

(3) the uniqueness of elastic solutions is lost if higher-order singular solutions are allowed;
and

(4) the solution for the stress field in the vicinity of an elliptical hafethe limit asthe aspect
ratio goes to infinite, does not have such higher-order singular temrs.

Some recent studies (Hui, 1995; Zhao, 1996) argued that the four reasons are not con-
vincing, and that more singular terms should be included. It has also been argued that the
singularity order of the stress field at the tip of a propagating crack may be higher than
—% (Wang, 1992; Prakash et al., 1992). Note that the above analyses are focused on ideal
geometric cracks, i.e. the crack width is zero. However, in real physical circumstances, a
crack is always of a certain width.

A kind of lip-shaped crack exists during the damage process of some materials, and the
stress field is controlled by such a crack. It is also known that the stress distribution ahead of
a notch is a vital factor in fatigue investigation and failure analysis, since cracks are prone to
initiate from a notch root, prior to final fracture. The analytical solutions to a notch crack are
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Figure 1. Infinite plate containing a central lip-shaped notch under remote biaxial loading.

difficult to obtain and they are sometimes shown as lip-shaped cracks as illustrated in Figure 1
(Hong et al., 1991). Various approaches based on LEFM have been applied to deal with the
notch-crack problem (Bowie, 1956; Schijve, 1982; Xiao et al., 1985; Baskes, 1975), and many
of them are numerical methods to calculate the stress field at the tip of a notch crack.

In this paper, a kind of lip-shaped crack with a dimension in width is studied. The complex
stress function method developed by Muskhelishvili (1954) is adopted to solve the problem
of an infinite plate containing a central lip-shaped crack subjected to remote biaxial loading.
In order to solve the problem, a leaf-shaped profile is constructed, which is similar to the lip-
shaped contour but has round tips so as to allow for the integral operation during the theoretical
derivations. Finally, the singularity order of the stress field at the tip of the lip-shaped crack
with a crack width is derived.

2. Basic equations

Figure 1 shows an infinite thin plate with a central lip-shaped crack subjected to remote biaxial
loading. One may transform the lip-shaped profile onztipéane to a unit circle on thg-plane
(Figure 2) via the following conformal mapping formula

_ _1 mL.__ s
Z—a)0<§)— Zar |:§+ c +r2(g2+m)]’ (l)

wherea is the half-length of the lip-shaped profile, = a/b — \/1+ (a/b)?, b is the half-
width of the lip-shaped profile, and= 1/(1 + m). Because of the difficulty in dealing with

the singular points in the derivation of the complex stress function, which was overlooked in
the previous investigation (Hong et al., 1991), we further construct the conformal mapping
formula

_ _1 mL__ 5
z=w(s) = zar [§+ c +r2(gz+m)]+aé§ )
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Figure 2. Mapping a lip-shaped profile iftplane (a) onto a unit circle in-plane (b).

to transform a leaf-shaped instead of a lip-shaped profile on-ffilane to a unit circle on
the ¢-plane, where is a shape factor. The leaf-shaped profile possesses smooth tips instead
of sharp ones, which enable it to be integrated around the profile boundary. It is obvious that
whené tends to zero, Equation (2) reduces to Equation (1). As a result, the leaf-shaped profile
tends to the lip-shaped profile. Thus, the stress field near the tips of a lip-shaped crack can
be obtained by calculating the stress field of a leaf-shaped profile first, and then Jetiting)
to zero. Figures 3(a)—(d) illustrate how the leaf-shaped contour transforms to the lip-shaped
profile with a decrasing value &f

According to the theory developed by Muskhelishvili (1954), the general form of complex
stress functions for an infinite planar problem on ¢helane are

X +iY
¢(§)=FR§—W_:_K)|H§+¢0(§), (3)
X —1Y
V¥(c) =T1R¢ + % In ¢ + v¥o(s), (4)

whereX andY are the resultant forces on the crack boundargndI'; are constants depend-
ing on the remote loading condition®, = %ar + a&, ¢o(c) andyg(c) are holomorphic for
] > 1, and

$o(00) = Yo(o0) = 0. (5)
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Figure 3. Leaf-shaped profile tending to lip-shaped crack asduces to zero.

For plane stress
3—v
K = s
1+v

wherev is Poisson’s ratio.

Let y be the circumference of the unit circle of theplane withn = €. Ony, according
to (3) and (4), the complex stress functions have the forms

() = TRy — =T 100+ bo(m)
¢(n) =TRny o $o(n),
— TR M In
v(n) =T1Rn+ (LT ) n+ Yo(n).
The boundary condition on theplane has the form
b + 2T + T = f,
o'(17)

(6)

(7)

(8)

wheref =i fg(X,l +1iY,) ds, with X,, andY,, being the resultant amounts of the positive nor-
mal stress on the element df the boundary. In this paper; ™’ denotes conjugate operation,
and "’ denotes differential operation. Substituting (6) and (7) into (8), one may obtain the
boundary conditions for the complex stress functions

w(n) ——

¢o(n) + =
' (n

) o) + Yo(n) = fo,

(9)
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Fot + 2 41 ) + Yol = To (10)
o' (1)
where
L X+i¥ o[z, X-iv 1 - 1
fo=f—TRn+ o Inn o (1) |:FR 727[(1_{_ P 77] 1R—, (1D
= =l XY () X+ 17
Jo=f =R = "= [ 20+ ) 77] S (12)

Equations (3), (4) and (9)—(12) are the basic equations of the problem.

3. Complex stress functions and the singularity order

When a plate with a central leaf-shaped notch is subjected to remote biaxial loading without
rotation, the corresponding remote boundary conditions are

[ =T = (01 +02), (13)
I'1=—3(01— 0p) €77, (14)

whereo;, and o, are the remote principal stresses due to external loading,the angle
between the direction af; and the axis £,. The boundary conditions on the notch surface
are

f=0 (15)
and
X+iYy=0. (16)

Substituting (13)—(16) into (11) and (12), we may have

_ -
fo=—%R(o1+02) | n+ a)(n):| + 3R(01 — o) = €%, (17)
L @' (n) n
- _ 1 1 w (1) 1 _2ia
Jo=—3R(01+02) | -+ — + 5R(01 —o2)ne ", (18)
n ')
where
(1) L+ mn»2[r’m(n® + m) + n° + (r + 26)rn®(n® + m)]
— : (19)
') rnm?+m)r(l—n?HA - mn?) (1 —m2n?) + 25(1+ mn?)?]
o _ nm+n)[r?md+mn®) + Un? +r(r + 25)(1+ mn?)} (20)

@' () r(L+mn?)rm? — D0? — m)(n? — m?) + 25(m? + m)?n?]’
Equations (19) and (20) are derived from (2).
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Equations (19) and (20) show that(g)/&(l/g)c%(l/g) is holomorphic insidey ex-

cept at+/—m, w(1/¢)/w' ()$,(¢) is holomorphic outsidg except att1/./—m. So that,
according to the Cauchy integral theorem (for > 1)

1 w(n) dn
7 | S B0

_i/w(n)$<}> dn
C2ri ), oy C\n)n—g

a7 (=1
= ~G1(s) ~ Ga() = == {jo_(\/% + j:(f_—” : (21)

1 [ow@m ,  dy
2i / wop s
1
e (/ 5(5) + Hi(s) + Hals)
oo , M| %(Fs) % (Tim)}

(22)

whereG; and G, are respectively the principal parts @fg)/&(l/g)c%(l/g) at/—m and
—+/—m; Hy andH, are respectively the principal partsdfl/¢)/w'(s)¢y(s) at 1//—m and
-1//—m; and

(1—m?)?
rl+m?) (1 +m3) + 26(1 - m?)?]

According to the Cauchy integral theorem, one may obtain

Moy =

o |, f‘)_(”; dy=—go(s) s> 1. (23)

>3 yﬁdn=0 sl > 1, (24)

o | T2 =voe) s> 1 (25

o V@dnzo Ic| > 1. (26)
Substituting (23)—(26) into (9) and (10), one may deyé€r ) andyo(¢) as

ho(s) =~ ) f’_dz o f Z))((Z))%( ) d_”g, @7)
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1 fodn 1 / w(m) dn
+ = : 28
2riJyn—¢ 27, w’(n)%(n)n - (29)

According to the Cauchy theorem, we obtain that (fgr> 1)
1 n dn

Yo(s) =

— | ——— =0, (29)
2ni J,n—¢

=0 = (30)
2ri J, n(n —¢) G’

1 w(m) d m

_/ (n) dn LY 25 ’ 31)
2ni J, ' ()N —¢ S ge+m

+ mg. (32)

L/W & _ s od/9)
2ni J, ') —¢ “Lime? ™ w(5)

Substituting (21) and (29)—(31) into (27), we can shipi) as

1
$o(s) = [%R(Gl—az)ezm—-R(Ul-i-Gz) - }—

+26 g
%(A) #(=
_M04R(01—02) j_ _%Mo |:§0(\/\/7_n>1+§0+(?n)1:|' (33)

It follows that

. 1
Po(s) = — |:%R(01—02) e — lR(Ul-i-ffz) ng} —

2+m (g2 +m)2]

+%[ # () + # () } (34)

—Mo3R(01+ 02) [

(¢ —/—m)? (¢ +/—m)?

Thus, we have

1 1
4(7=) = 4(=)
_ Rm(o1—o02) i i m(m? + 1) 1
= —2 |:e2 — € MO (mz . 1)2 j| 1_ [M in(m2+l)]2

0 (mel)Z

rm? m(m? + 1) 1

+ My 2 2:| 2
— m(m2+1)
+2 (m* =1 | 14 M, i

(35)

——R(Ul + 02) [
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Substituting (35) and (33) into (3), then using the boundary conditions given by (13)—(16),
one derives

' 1
¢(s) = FR(O1+ 05 + [%R(Ul —0p) €% — IR(o1 + oz)r :-ng] <

_Ss
s?+m
wherep = ¢4(1//—m) = ¢p(—1//—m).

Similarly, the substitution of (22), (29), (30), (32) and (35) into (28) may give the expres-

sion foryo(s), then using the boundary conditions of equations (13)—(16), one derives from
(4) that

—Mo [3R(01+02) + 0], (36)

—2ix 1 5(1/5‘) M, <
¥(5) = —3R(e1—02) €5 + jR(01+02) [mg o W(o) 1—|—?ng2}
o(l/g) , Moc _
T w0 $o(s) + 1+mg2'0' (37)

Equations (36) and (37) are the complex stress functions for the problem of an infinite plate
containing a central leaf-shaped notch.
The stress field can be obtained from the complex stress functions with

oy +0, =4Rdd(g)], (38)

Oy — 0y + 20T, = ,L[Cly(g)w(g) + W () (5)], (39)
o'(s)

where®(¢) = ¢'(¢)/@'(g), and¥(¢) = ¥'(¢)/w'(g). The solutions to (38) and (39) will
give the stress distribution with respectitowhich may especially show the stress field in the
vicinity of the notch root for a leaf-shaped notch. Note that the conformal mapping formulas
of (1) and (2) provide the unique transformation betweenrtplane and the-plane, i.e. there
is a unique correlation between a point on ¢hplane and a relevant point on thglane. The
most important points are = +1, which correspond to = +a by (1), orz = +a(1+ §)
by (2). Let¢ be 0, then a leaf-shaped profile becomes a lip-shaped crack with sharp tips.
Consequently, the stress field at the tip of a lip-shaped crack can be derived. Figures 4(a)—(d)
show the distribution ofr, for different values of, indicating that the distribution af, has
strong singularity characteristics as the valug ¢énds to zero.

It is known that, if the crack width is zero, the singularity order of the stress field at the
crack tip is—%. However, if the crack width is not zer@ > 0) but with sharp tips, the
singularity order of the stress field can be analyzed by means of the above complex stress
functions by reducing the value éfto zero.

Referring to (38) and (399, is the sum of the following three terms: 2Re(s)], RV ()]
and R¢d'(¢)(w(c)/w'(¢))]. Based on the theoretical analysis and the numerical calculations
it is evident that all of the three terms become infinite at the tips of a lip-shaped crack. The
singularity intensity of the third term is the most predominant, and that of the other two
terms have a comparatively small effect. Figure 5 shows this tendency in terwps/efsus
1, with o = 0. It is obvious that the singularity order of is dominated by the term of
R P (¢)(w(c)/w' (¢))], i.e. the third term.
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Figure 4. Stress field for leaf-shaped notchgrplane at different values &f, witha = 0,01 = 0,00 = 1,a =1,
andb = 0.1.

Consider the singularity order @’(¢) andw(g)/@'(s) along the real axis at = +1,
respectively. For convenience in the following discussion, we let

1
c=+1 (40)

Thus®'(¢) andw(¢)/w'(¢) can be rewritten as a function f

A _ py), (41)

w'[¢(M)]

PTc(M] = GH). (42)
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Figure 5. Stress singularity tendency of the three termsgf

dimensionless stress ao/o2

It is clear thatF (1) and G(1) have the same singularity order @3(¢) and w(c)/w'(¢)
respectively, while the singularity points shift4eco. If £ is zero,F (i) has the form

_2m+ D20 +42m +3)(m + DA+ 00
Fo) = 2(m — 1228+ O(\7) ’ “3)

where O (') represents the polynome with the orderiéf It is seen that when tends to
infinity the singularity order of" (1) can be derived as

(44)

F)~O00) form#—1
{F(A)—)O for m = -1

Note thatn = —1 corresponds to/b — 0. When¥ is zero, the shape of the notch is sharp and
the stress singularity inevitably exists. For simplicity in the discussion of stress singularity at
the sharp notch tip, we set= 0 and consider two cases: @)= 0,0, = o, and (b)o; = o,
Op = 0.
For case (a), substitution of= 1/(1 + m) and (40) into (42) gives
P'lsM)] = GO
= 1o[(m" 4 3m® + 2m® + 6m* + 11m® + 5m® + 2m + 2)1°
+(m" 4 3m® + 3m® + 15m* + 31m® + 13n% + 5m + 9)A°

(m — 1) -

2
+0(x4)][ T )\5+0(x4)} . (45)

From the above equation, it is seen that whdends to infinity andn # —1, the singularity
order of ®'[¢()1)] is 1. For the extreme situation that= —1, there exists

(D/[g()\)]h—mo - 0, (46)
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which implies that the stress is zero at the notch tip and that the stress singularity is not
relevant.
For case (b), substitution of= 1/(1 + m) and (40) into (42) gives

P'IsM)] = GO
= %a[(m7 —m®+ 4m* — m® — 3m?)28
+(m" = m® + 3m® + 15n* — m® — Tm® + 5m + A5 + 0H)]
x[(2m3 — 2m? — 2m 4+ 2)A° + m*=5m?—5m + Yr* + oA3H1™L.  (47)

It is seen that when tends to infinity form # —1 andm # O, the singularity order of
®'[¢(M)]is 1. For the extreme situation that= —1 andm # 0, one may show

D' [c(M]hsoo — ORO). (48)

Based on the above analyses, we may deduce the singularity orgleothes -plane, which
is caused by the joint effect @’ (¢) andw (¢)/w'(<). Itis noticed that the singularity order of
@' (¢) andw(¢)/w'(c) at; — 1 corresponds to the singularity order®f(1) andw (1) /o’ (1)
ati — oo. From (43)—(48), we obtain that the singularity ordesebn the¢-plane is|2| for
m # —1andis 0 formn = —1.

The next step is to derive the singularity order on thglane. For this purpose, we may
use the relation of = 1/(1+ m) and rewrite (2) as

ac* =20 @A+ m)c® + a(m®+ 4m + 1)c? — 2om(1 + m)c + am?® = 0. (49)

We can see that the power ordercok 4 and that ofv is 1, i.e. the power order @f is one
fourth of that of¢. Therefore, we may state that the singularity ordes0bn thez-plane is
|%| form # —1 and is O form = —1. Again note that whem = —1, i.e.a = 0, the notch
crack does not exist. Otherwise when# —1, i.e. a sharp notch crack with different sizes
in width, the singularity order of the stress field always remaiésThis result confirms that
the singularity order of a notch crack is the same as that of an ordinary crack and that the
K -theory in terms of stress singularity characteristics is physically valid.

4. Conclusions

By using the conformal mapping method, the distribution and the singularity characteristics
of an infinite thin plate with a central lip-shaped crack subjected to remote boundary biaxial
loading was studied. The deviation was performed by taking advantage of a leaf-shaped con-
figuration. The singularity order of the crack-tip stress field remaiﬂz-'uswhich is not affected

by the change of notch-crack width. Thus, the validity of the Williams stress field is confirmed
and theK -method can be reasonably applied for the real crack with a certain amount in crack
width other than the ideal geometric one.
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