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Abstract

The resistance to cleavage cracking of a regular array of short fibers was discussed through R-curve analysis. The final failure of

the fiber array associated with the unstable crack advance across it occurred when the balance of the rates of the energy release rate
and the fracture resistance was reached. The fracture resistance dominated by the combined bridging effect and crack trapping
effect increased with the volume fraction and the aspect ratio of the fibers, as well as the internal friction. The toughening effect
strongly depended on the crack length for short cracks but was size insensitive for long cracks. The elastic properties of the matrix

had little influence on the overall fracture resistance.
# 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

For many decades short fiber reinforced composites
(SFRC) based on polymeric, metallic, and ceramic
materials have been widely applied due to the advanced
mechanical and thermal properties, as well as the cost
efficient processing. One of the most important features
of SFRC is the high fracture resistance. Various tough-
ening mechanisms such as the bridging effect and the
crack trapping effect were investigated both experimen-
tally and numerically [1–5].
In engineering practice where the reliable service per-

formance of the composites must be assured under any
adverse condition, understanding the process of clea-
vage cracking across the short fibers was of great inter-
est. At relatively low temperature, in intrinsically brittle
or quasi-brittle matrix the fracture mode is cleavage,
which can be studied in context of linear elastic fracture
mechanics (LEFM) quite successfully. In this theory the
driving force of the crack advance is described by a sin-
gle parameter K, the stress intensity factor, or, equiva-
lently, G, the energy release rate. When the dissipation
rate of the strain energy and the work of separation of
the fracture surfaces are equal to each other, i.e.

G ¼ R; ð1Þ

the crack starts to propagate, with R being the fracture
resistance of the material.
In many SFRC, the fiber–matrix interface could not

survive the stress concentration at the crack tip.
Debonding and pull-out of the short fibers from the
matrix were repeatedly reported in both laboratory tests
and field applications [6–9]. The mechanics of the
advance of the cleavage crack in such a composite with
a process zone behind the crack tip where a character-
istic traction separation process is dominant has been
considered in detail by Andersson and Bergkvist [10].
The traction process was assumed to be linear and the
fracture resistance of the composite was modeled
through area average

Gcomposite ¼ n �̂�̂=2
� �

ð2Þ

where n is the number density per unit width of the
short fibers, �̂ is the peak traction force, and �̂ is the
maximum traction distance above which the traction
force becomes negligible. Although this model, as well
0266-3538/$ - see front matter # 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/j.compscitech.2003.07.001
Composites Science and Technology 64 (2004) 711–717

www.elsevier.com/locate/compscitech
* Corresponding author. Tel.: +1-330-972-2426; fax: +1-330-972-

6020.

E-mail address: yqiao@uakron.edu (Y. Qiao).

http://www.sciencedirect.com
http://www.sciencedirect.com
http://www.sciencedirect.com
http://www.elsevier.com/locate/compscitech/a4.3d
mailto:yqiao@uakron.edu


as the R-curve analyses based on it, has been of
unquestionable utility, the crack front–fiber interaction
could not be accounted for. As will be discussed below,
the penetration process of the crack front across an
array of short fibers consists of the stable crack growth
and the unstable crack advance. The crack growth
becomes unstable before the fibers are fully pulled out.
Thus, Eq. (2) somewhat overestimated the toughening
effect by assuming that the pull-out process was com-
plete and, on the other hand, tended to underestimate
the toughening effect since the non-uniform nature of
the cleavage front profile was ignored.
Fig. 1 [11] shows the evolution of the cleavage front

profile in an epoxy resin reinforced by a regular array of
well-boned nylon rods. When the cleavage front
encountered the obstacles it first penetrated between
them stably. The obstacles bridged across the two crack
flanks and trapped the cleavage front locally. According
to Eq. (1), the stress intensity along the verge of propa-
gating was equal to the resistance of the matrix, while
that along the nylon rods should be larger. Conse-
quently, the overall stress intensity at the crack tip was
higher than Kmatrix

IC , the critical stress intensity factor of
the matrix. If the obstacles were tough enough and the
obstacle–matrix interface was perfect, eventually the
crack front would surround the obstacles somewhat
similar to a dislocation line bypassing precipitations.
This phenomenon has been studied through computer
simulations intensively, and the numerical results fit
with the experimental data quite well [12–16]. However,
in most of these models [12–15] it was assumed that the
cleavage front could cut through the obstacles gradu-
ally, which made it difficult to take account for the
fiber–matrix debonding.
In the following discussion we will analyze the resis-

tance of a regular array of debondable, tough short
fibers to cleavage cracking through R-curve method. If
the volume fraction of the fibers is low or the maximum
traction displacement is small, the resistance of the fibers
exposed in the fracture surface has been fully overcome
before the crack front encounters the next fiber array.
Under this condition the resistance offered by a single
array of short fibers is dominant to the overall fracture
toughness. If more than one arrays are involved in the
crack front advance, process-zone model based on under-
standing the single array behavior should be developed,
which is important but beyond the scope of this paper.
2. Resistance curve of a regular array of short fibers

As discussed above, in many SFRC the fibers can be
pulled out when the cleavage front bypasses them.
Additional fracture work is required to overcome the
bridging effect as well as the crack trapping effect. In the
pure bending test of chopped strand mat and sheet
molding compound materials [8], it was found that the
bridging behavior was independent to the specimen
geometry. Therefore, the bridging law should be taken
as a material property.
The separation of the fibers from the matrix can be

considered as the mixed-mode fracture triggered by
‘‘preparatory’’ shear deformation, after which the inter-
nal friction between the fibers and the matrix is con-
stant. Consider the crack front depicted in Fig. 2a. The
material is homogeneous elsewhere except for the reg-
ular array of the short fibers. When the stress intensity
at the crack tip is higher than Kmatrix

IC , the front starts to
penetrate between the fibers stably. Debonding occurs
along the fiber–matrix interface if the required bridging
force exceeds the critical value

fb ¼ k 2�rð Þ h0 � Dhð Þ ð3Þ

where k is the effective work of separation of the fiber–
matrix interface, �h is the crack opening displacement
along the short fibers, and r and h0 are the radius and the
half length of the fibers, respectively. With increasing
stress intensity the penetration depth of the crack front
increases (see Fig. 2b), which results in the well-known
R-curve. Note that due to the nonuniform nature of the
crack front profile, the effective crack growth distance
Fig. 1. The evolution of the profile of the cleavage front overcoming

the crack trapping effect of a regular array of well-bonded nylon rods

in epoxy matrix [11]. The effective crack-tip stress intensities are indi-

cated by � ¼ K eff
I =Kmatrix

IC , with K eff
I being the applied stress intensity.

The white lines are the numerical results provided by Bower and Ortiz

[14].
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�a should be smaller than the maximum penetration
depth of the verge of propagating.
Fig. 3 shows a typical R-curve. For the crack depicted

in Fig. 2b, with the constant applied stress �, the energy
release rate increases with crack length. If � is small, e.g.
when �=�1, the energy release rate is below the fracture
resistance of the matrix, Gmatrix, and the crack length
remains the initial value, a0, until the stress is increased to
�2, where Eq. (1) is satisfied and the crack starts to grow.
Since with the crack advance the fracture resistance
increases more rapidly than the energy release rate, the
crack will be arrested immediately. The crack grows
stably with increasing � until the crack length a increa-
ses to the critical value acr, where

@G

@a
¼

@R

@a
ð4Þ

Then, the crack advance becomes unstable and the
final failure occurs.
The stress intensity factor at the tip of the cleavage

crack in Fig. 2b caused by the bridging force can be
calculated as [17]

KI0 ¼
P0ffiffiffiffiffiffi
�a

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

a0
Da

r
ð5Þ

where P0 is the effective bridging force per unit width.
The associated strain energy is

U0

B
¼

1� �2

E

P2
0

�
ln

1þ x

x2
ð6Þ

where B is the specimen thickness; � and E are the
Poisson’s ratio and the Young’s modulus of the matrix,
respectively; and x ¼ Da=a0. Note that Da ¼ a� a0.
Since the response of the matrix is elastic, we have

Dh� ¼
1� �2

�E
ln

1þ x

x2

� �
P0 ð7Þ

with Dh� being the change of the crack opening dis-
placement caused by P0. If the fiber array is long
enough such that the deformation is under the plane
strain condition, P0 can be taken as fb/L, with L being
the average spacing between the short fibers. Thus,
through Eqs. (3) and (7),

Dh ¼
Dh0 � k0h0ln1þ x=x2
� �

1� k0ln
1þ x

x2

� � ð8Þ

where �h0 is the crack opening displacement along the
short fibers if the bridging force was zero, and
k0 ¼ 2 1� �2

� �
k
E
r
L. Note that �h0=�h+�h*, and can

be estimated as [14]

Dh0 ¼
1� �

	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 1þ xð Þ

2

r
� � a0 ð9Þ

where 	 is the shear modulus of the matrix. The rela-
tionship among �h0, �h, and �h* is depicted in Fig. 4.
Consequently, Eq. (8) can be rewritten as

Dh ¼

1� �=	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 1þ xð Þ

2

r
� � a0 � k0h0ln

1þ x

x2

 !

1� k0ln
1þ x

x2

� � ð10Þ
Fig. 2. Schematic diagram of cleavage cracking across a regular array

of short fibers: (a) top view; (b) side view.
Fig. 3. Schematic diagram of a typical R-curve analysis.
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Through Eq. (10), we can obtain the critical effective
crack growth distance, x0, at which

Dh ¼ 0:

As discussed above, the effective crack growth distance
x increases with the external stress. When x is below x0,
the fiber–matrix interface does not fail. When x reaches
x0, the fibers will be pulled out gradually associated with
the stable crack growth. Since the crack breaks
through the fibers after the debonding occurs, in the
following discussion we only consider the situation
where x > x0.
The fracture work associated with the effective crack

growth of �a consists of the work of separation of the
matrix and the traction work:

Wf¼GmatrixDxþ
1

L
k 2�rð Þ h0�Dhð Þ þk 2�rð Þh0½ 
� Dh ð11Þ

Thus, the resistance curve can be stated as

R ¼
Wf

Dx
¼ Gmatrix þ

2�krDh
a0Lx

2h0 � Dhð Þ ð12Þ

Hence,

@R

@a
¼

2�kr

a20Lx
2 h0 � Dhð Þ

@Dh
@x

�
Dh
x

2h0 � Dhð Þ

� �
ð13Þ

The value of @R=@a is positive when �h is relatively
small and, since the length of the load-bearing part of
the short fibers keeps decreasing, decreases with x.
When the crack length increases to a1, �h reaches �h1
where @R=@að ÞDh1¼ 0, after which @R=@a becomes nega-
tive. However, through Fig. 3 it can be seen that the
descending part of the R-curve has no influence on the
critical condition of the unstable crack advance. Note
that in Eq. (12) the toughening effect of the fibers
consisting of the bridging effect and the crack trapping
effect is considered as a whole. The crack trapping effect
comes in by affecting the crack opening displacement.
The strain energy stored in the matrix is caused by

both the external stress and the bridging forces. The
strain energy associated with the external stress is

U1

B
¼
U

�

B
�

1� �2
� �

�

2E
�2a2 ð14Þ

where U* is the strain energy if the crack did not exist.
The part of the strain energy directly caused by the
bridging forces is

U2

B
¼

1

L
k 2�rð Þ h0 � Dhð Þ Dh0 � Dhð Þ ð15Þ

Based on Eqs. (14) and (15), the energy release rate
can be obtained as

G ¼ �
@ðU1=BþU2=BÞ

@a

¼
1� �2
� �

E
��2a0 1þ xð Þ þ

2�kr

a0L
h0 þ Dh0 � 2Dhð Þ½

@Dh
@x

�
1� �ð Þ�a0

2
ffiffiffi
2

p
	

h0 � Dhð Þ
1þ 2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 1þ xð Þ

p
# ð16Þ

Since the strain energy caused by the external stress is
proportional to a2, its contribution to the energy release
rate increases linearly with crack length. On the other
hand, since the larger the crack growth distance, the less
profound the effect of the bridging forces, with increas-
ing a, the component of the energy release rate asso-
ciated with the bridging effect decreases with a
descending rate, which results in the concave G–a curve.
Consequently, there must exist a combination of the
external stress and the critical crack length at which
both Eqs. (1) and (4) are satisfied. This condition,
depicted as point ‘‘C’’ in Fig. 3, indicates the onset of
the unstable crack advance leading to the final failure of
the fiber array.
Substitution Eqs. (12), (13), and (16) into (1) and (4)

gives the critical energy release rate of the unstable
crack advance across the array of the short fibers, GIC,
which is the peak resistance that the fiber array can
offer. It can be seen that GIC is a function of {r, h0, L, �,
k, a0, E, 	, Gmatrix}. Note that for isotropic matrix,
E=	 ¼ 2 1þ �ð Þ. The numerical results showed that E
and � had little influence on GIC, which indicates that
the toughening effect of the short fibers is somewhat
independent to the elastic properties of the matrix.
Hence, according to � theorem [18], we have

G~ ¼
GIC

Gmatrix
¼ f c; �; k~; a~

� �
ð17Þ

where c ¼ �r2h0=L
3 is the fiber volume fraction, � ¼

h0=r is the aspect ratio of the short fibers, k~ ¼
Fig. 4. Schematic diagram of the relationship between the sliding dis-

tance along the fiber–matrix interface, �h, and the normalized effec-

tive crack growth length, x, with xcr=acr/a0. At x0, the debonding of

the fiber–matrix interface occurs. At xcr, before the fibers are fully

pulled out, the crack growth becomes unstable, i.e. �h <h0.
714 Y. Qiao, X. Kong /Composites Science and Technology 64 (2004) 711–717



1þ kh20= Gmatrixrð Þ reflects the internal friction, a~ ¼ a0=r
is the normalized initial crack length, and f is a function
determined by Eqs. (1) and (4). The effects of these fac-
tors will be discussed in detail below.
3. Results and discussion

Fig. 5 shows the comparison of the experimental data
and the numerical results of the relationship between G~

and c. The experimental data were obtained in the frac-
ture tests of the carbon fiber reinforced cement compo-
sites (CFRC1) [19], the carbon fiber reinforced
polyethersulphone (CFRP) resin [20], and the steel fiber
reinforced cement composites (SFRC) [21]. In CFRC1,
the fiber aspect ratio was about 10, and it is reasonable
to assume that the initial crack length was of the size
comparable to the cement particles, which was about 10
times larger than the fiber radius. If the value of k~ is
taken as 11.0, the numerical curve can capture the
experimental result quite well. For CFRP, � was about
10 and a~ was in the range of 1000–2000. For the best fit
of the numerical solution to the experimental data, k~

should be around 16.0. In SFRC, the microstructure
was somewhat similar to that of CFRC1, while k~ was
about 5.0, which was considerably lower than that of
CFRC1. This was consistent with the observation that
the adhesion of the carbon fibers was better than that of
the steel fibers. Through the definition of k~, it can be
seen that the value of kh0=Gmatrix of these composites
were in the range of 0.5–2.0 and quite acceptable. Note
that in this model, increasing fiber volume fraction is
always of a beneficial effect to the fracture toughness. In
real composites, usually when the fiber volume fraction
is relatively high the fiber–matrix bonding cannot be
developed fully. Under this condition, without con-
sidering the c dependence of the internal friction, this
model is no longer valid.
In Andersson–Bergkvist model it was assumed that
the fracture resistance of the composite is proportional
to the maximum traction distance, which was often
related to the fiber length. However, through the
numerical result shown in Fig. 6, the G~ –� relation is
actually nonlinear, as it should. The effect of � is quite
profound when the fiber is relatively short, while when �
is larger than 50 its influence becomes negligible. It also
can be seen that the stronger the fiber–matrix bonding,
the more significant the influence of the fiber length.
As discussed in Section 2, the second derivative of the

strain energy is essential to the final failure of the fibers.
Therefore, the fracture resistance should be affected by
the crack length. On one hand, for a shorter crack, since
the crack length dependence of the energy release rate is
more profound, the toughness tends to be lower. On the
other hand, according to Eq. (12), the fracture resis-
tance of the fibers decreases with the initial crack length.
Thus, increasing a0 tends to lower the fracture resis-
tance. The overall effect of the crack length is shown in
Fig. 7. The fracture resistance decreases rapidly with
Fig. 6. Influence of the aspect ratio of the short fibers on the fracture

resistance (a~ ¼ 1000 and c=0.5).
Fig. 5. Comparison of the experimental data and the numerical results

of the effect of the fiber volume fraction.
Fig. 7. The relationship between the fracture resistance and the initial

crack length (k~ ¼ 104:2).
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increasing crack length when a~ is small, and becomes
somewhat independent to a~ when it is relatively large.
This size effect can also be attributed to the non-self-
similar nature of the crack front. The numerical curve of
the crack length effect was compared with the experi-
mental result of the short fiber reinforced epoxy com-
posites [22]. By using k~ as an adjustable parameter the
numerical solution fit with the experimental data quite
well. However, this data fitting exercise does not con-
stitute a fully definitive model and demonstrates only a
proper framework for considering the crack size depen-
dence of the fracture toughness, since when the fiber
volume fraction is high, other toughening mechanisms
can be significant and this model may no longer be
valid.
In engineering practice, very often a simple regressed

expression is useful. Rose [12] suggested that the
fracture resistance of fiber-reinforced composites can be
calculated as

G~ ¼ 1þ K~ 2 � 1
� � 2r

L
ð18Þ

where K~ is the ratio of the toughness of the fiber to the
toughness of the matrix. Similarly, if we assume that the
effects of k~ and c are of the form of power law, based on
Eqs. (16) and (17), we may state that

G~ ¼ 1þ k~ � 1
� �m c

�

� �n
f1 �; a~ð Þ ð19Þ

where f1 is a function to be determined. Since, if r, L,
and a0 are changed by the same factor, the model
should be scalable, f1 can be stated as f1 ¼ � �=a~ð Þ

�.
Through the least square method, the numerical result
can be regressed as

G~ ¼ 1þ 1:83 k~ � 1
� �0:80 c

�

� �0:42 �

a~

� �0:55
ð20Þ

In the range of parameters discussed above, the
difference between the numerical solution and the
regressed curve is less than 5%.
4. Conclusions

If the volume fraction of short fibers is relatively low
or the traction distance is relatively small, the overall
fracture toughness of short fiber reinforced composites
is dominated by the behavior of a single fiber array. In
this paper, the resistance to cleavage cracking of a reg-
ular array of short fibers was discussed in context of
R-curve analysis. The internal friction between the fibers
and the matrix was assumed constant, and the interac-
tion among the fibers was neglected. When the energy
release rate equals Gmatrix, the crack begins to penetrate
between the short fibers. The penetration depth of the
cleavage front rises with the energy release rate. When
the critical penetration depth is reached the crack
advance becomes unstable before the fibers are fully
pulled out, which leads to the final failure. The critical
condition of the unstable crack propagation is deter-
mined by both of the first derivative and the second
derivative of the strain energy. The following conclu-
sions are drawn:

1. To study the overall fracture resistance, the crack

front–fiber interaction must be taken account
for. A vital microdamage factor governing the
front behavior and the associated fracture work
is the crack opening displacement along the short
fibers.

2. The elastic properties of the matrix have little

influence on the fracture toughness. The fracture
toughness rises with the fiber volume fraction,
the fiber length, and the effective strength of the
fiber–matrix interface.

3. The fracture resistance is crack length dependent.

The longer the initial crack, the smaller the cri-
tical energy release rate. However, when the
crack length is much larger than the character-
istic length of the fibers, this size effect becomes
negligible.

4. The combined effects of these factors on the

overall fracture resistance can be estimated
through the regressed power-law expression.
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