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Summary. Through an energy analysis of the cleavage cracking in a constant-K sample, the analytical

solution of the dynamic fracture resistance for a brittle, homogeneous material is obtained. The depen-

dence of the crack behavior on the accumulated continuum dissipation associated with the dynamic effect

is analyzed. The relationship between the critical energy release rate of crack arrest and the applied stress

intensity factor is discussed in detail.

1 Introduction

The dynamic crack propagation and crack arrest in brittle materials are of immense scientific

interest and technological importance. As the crack propagates at a relatively high velocity, _a,

with a being the crack length, stress waves are emitted from the tip into the background,

accompanied by a considerable dissipation of kinetic energy associated with the dynamic

effect that depends upon the nonlocal atomic interactions. As a result, the crack growth

driving force changes, and the fracture resistance becomes a function of the crack size and the

crack growth rate [1]. While the dominant energy dissipation mechanisms and processes are

related to the crack-tip atomic structure, the overall energy balance can be analyzed in

context of linear elastic fracture mechanics (LEFM), i.e., the Griffith theory [2]. When the

energy release rate, G, equals the fracture resistance, R, a static crack starts to propagate. If

@G=@a > @R=@a, the crack growth becomes unstable and is affected by the loading rate and

the sample geometry [3].

Over years, the dynamic crack front advance has been observed experimentally and simu-

lated numerically [4]–[6]. The governing equation can be stated as [7]

KðtÞ ¼ KID ð _aÞ; ð1Þ

where K is the dynamic stress intensity factor, KID is the dynamic fracture toughness, and t is

the time. However, even in highly brittle materials such as glasses or intrinsically brittle alloys

at low temperatures, the calculation of KðtÞ and the measurement of KID, which usually requires

accurate determination of the crack velocity, can be difficult. For example, the basis of the

continuum theory that the crack velocity depends only on the singular part of the crack-tip

stress field can be questionable [8]. Currently, this issue is often analyzed using lattice models, in

which the materials are considered as network of mass points connected by nonlinear springs

[9], [10].
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Based on these studies as well as the continuum mechanics analyses, it is generally accepted

that for subsonic crack propagation the crack growth driving force can still be captured by the

energy release rate, even though the crack tip stress field is distorted. This is equivalent to

assuming that the energy dissipation in the near-tip field associated with the work of separation

and the stress wave emission can be continuously balanced by the ‘‘release’’ of the strain energy

from the background. Furthermore, since the characteristic time of thermal vibration of atoms

is smaller than that of wave propagation by orders of magnitude, the surface free energy is

independent of the crack velocity.

2 Governing equations

In order to avoid complicated simulations of the stress field at a dynamic crack tip, in this paper

we will discuss the unstable crack propagation and the crack arrest through an energy analysis.

For the sake of simplicity, we consider the contoured constant-K sample of a homogeneous,

isotropic, and brittle material depicted in Fig. 1. The height of arms, hðcÞ, is given by [11]

4c2

h3
þ 1þ m

h
¼ m; ð2Þ

where c is the distance to the loading axis, m is Poisson’s ratio, and m is an arbitrarily chosen

number. It will be shown shortly that the sample geometry has little influence on the fracture

resistance. When m! 0, h tends to infinity and the sample converges to an infinitely large

plate.

In the constant-K sample, the effective compliance, Ce, is linear to the crack length [11],

Ce ¼
d
P
¼ 6ma

E
; ð3Þ

where d is the crack opening displacement, P is the crack opening load per unit thickness, and E

is the modulus of elasticity. Hence, with constant P the energy release rate is independent of the

crack length. Noticing that U ¼ dP=2 and G ¼ �@U=@a, we have
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Fig. 1. A schematic diagram of the
cleavage cracking in a constant-K

sample
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G ¼ E

12m

d2

a2
ð4Þ

and U ¼ a G; ð5Þ

where U is the elastic energy per unit thickness.

The radius of the precrack tip can be arbitrarily chosen such that the critical energy release rate,

G1, at the onset of crack advance is considerably larger than the surface free energy, G0. In the

following discussion we will assume thatG0 andG1 are given. As shown in Eq. (4), with the quasi-

static increase in the crack opening displacement, the energy release rate rises rapidly.When G1 is

reached, the crack starts to propagate along the median plane. Associated with the increase in

crack length, a certain amount of elastic energy is dissipated due to the work of separation of the

fracture surfaces. As discussed above, with the assumption that thematerial is purely brittle,G0 is

independent of a and _a [12]. Note that this assumption does not violate the fact that KID is a

function of _a, since KID is related to the stress field and G0 is determined by the atomic bonding,

and in a dynamic fracture the ordinary relation of K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E G=ð1� m2Þ
p

is no longer valid.

Because G1 > G0, the crack advance is unstable. During the dynamic crack propagation the

variation in crack opening distance, d , is negligible and, therefore, the static energy release rate

keeps decreasing. Eventually, when G decreases to the critical value of crack arrest, Garrest, the

crack stops. When the crack growth distance is smaller than the initial crack length, _a is lower

than the sound speed, and the energy dissipation is balanced by the decrease in strain energy.

Under this condition we have [13]

W � dT

dA
� dU

dA
¼ G0 þ DC; ð6Þ

where W ¼
R

S

pi
dui

dA
dSþ

R

V

bi
dui

dA
dV reflects the work done on the crack-tip field, with S being

the integration surface at the crack tip, A the fracture area, pi the surface traction, ui the

displacement, V the enclosed volume, and bi the body force; T is the kinetic energy associated

with the stress waves emitted from the crack tip; and DC captures the continuum dissipation.

Since d is constant, W ¼ 0. Thus, Eq. (6) becomes

DU ¼ Dþ T þ G0x; ð7Þ

where DU is the difference between the elastic energy per unit thickness of current and initial

configuration, x is the crack jump length, and D ¼
R x

0 DC dx is the accumulated dissipated

energy per unit thickness.

Through Eq. (4), it can be obtained that

~G ¼ a1=a0ð Þ2¼ 1þ D~að Þ2 ð8Þ

with ~G ¼ G1=Garrest, a1 ¼ a0 þ Da the final crack length, and D~a ¼ Da=a0. Similarly, for G1 we

have ~G
�
1 ¼ ð1þ ~xÞ2, where ~G

�
1 ¼ G1=Gx; Gx is the static energy release rate when the crack

growth length is x, and ~x ¼ x=a0. Note that ~G is independent of ~x. Hence, according to Eq. (5),

DU ¼ a0 G1 � a0 þ xð ÞGx, which can be rewritten as

D~U ¼ x ~G

1þ ~x
; ð9Þ

where D~U ¼ DU=ða0 GaÞ. Substitution of Eq. (9) into (7) gives

~Dþ ~T ¼
~x ~G

1þ ~x
� b~G~x; ð10Þ

where ~D ¼ D=ða0 GaÞ, ~T ¼ T=ða0 GaÞ, and b ¼ G0=G1 � 1.

Dynamic cleavage cracking 21



As the crack advances, a considerable amount of kinetic energy is radiated from the crack tip

into the background in the form of stress waves. The kinetic energy will be dissipated rapidly

through damping, especially in materials of relatively high damping ratios such as epoxy resin

and some BCC metals. Even if the characteristic time of wave decay is comparable with or even

longer than that of crack growth, for large samples where the influence of wave reflection is

negligible, the energy carried by the stress waves can still be considered as a part of the

dissipated energy since it has little effect on the crack front behavior. If all the energy carried by

the stress waves is eventually dissipated and the quasi-static crack-tip plastic deformation is

negligible, ~D can be related to ~T through ~D ¼
R

~x

0

~T ðx̂Þ dx̂ or, equivalently, ~T ¼ d~D
d~x

.

Consequently, Eq. (10) can be rewritten as

d~D

d~x
þ ~D ¼

~x ~G

1þ ~x
� b~G~x; ð11Þ

with the boundary condition of ~D
�

�

~x¼0
¼ 0. Note that the factor of m vanishes in Eq. (11),

indicating that ~D is independent of the sample geometry.

3 Results and discussion

Equation (11) has the analytical solution

~D ¼ ~G� b~Gð~x� 1Þ � ~Ge�ð~xþ1Þ ln ð~xþ 1Þ � ~Gð1þ bÞe�~x � ~Ge�ð~xþ1ÞÊð~xþ 1Þ; ð12Þ

where Ê ð~xÞ ¼
P

1

n¼1

ð~xÞn�nð~xÞn�1 �1
n �n! : The derivative of Eq. (12) with respect to ~x gives the kinetic

energy

~T ¼ �b~Gþ ~Ge�ð~xþ1Þ ln ð~xþ 1Þ � ~G
e�ð~xþ1Þ

~xþ 1
þ ~Gð1þ bÞe�~x

þ ~Ge�ð~xþ1ÞÊð~xþ 1Þ � ~Ge�ð~xþ1Þ dÊð~xþ 1Þ
d~x

: ð13Þ

When ~x ¼ D~a, the crack velocity is zero, i.e.,

~T
�

�

~x¼D~a
¼ 0: ð14Þ

Combination of Eqs. (8), (13), and (14) gives D~a and ~G as functions of b. The numerical results

are shown in Figs. 2 and 3. The relationship between the crack growth length Da and b can be

regressed as

Da

a0
¼ f ðbÞ ð15Þ

with f ðbÞ ¼ �0:993þ 1:104 1=bð Þ � 0:116 1=bð Þ2þ0:005 1=bð Þ3, based on which, through

Eq. (8), the critical energy release rate can be obtained as

Ga

G0
¼ gðbÞ; ð16Þ

where gðbÞ ¼ 1=
ffiffiffi

b
p
þ

ffiffiffi

b
p

f ðbÞ
� �2

. Equation (16) indicates that Ga is not a material constant. It

varies with G1. If G1 ¼ G0, the crack growth is stable and, thus, the dynamic effect is negligible,

which is reflected by Ga ¼ G0. As G1=G0 increases from 1 to 3, the dissipation of kinetic energy

results in the rapid decrease of Ga to about 0.5G0. This value is close to, but somewhat lower
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than the experimental result of glasses [14], which can be attributed to that in the current case

the propagating crack is assumed atomically sharp.

The dependence of Ga on G1 demonstrates clearly the importance of the dynamic effect. At

the tip of a dynamic crack, the energy must be balanced by the stress waves. The kinetic energy

is the difference between the dynamic part of the crack growth driving force, DU � D, and the

nominal resistance, G0 x. As long as the available energy for the stress wave emission is positive,

the crack does not stop. This is quite different to the criterion of crack propagation dominated

by the energy release rate itself. Therefore, the crack growth distance is longer than the result of

the quasi-static analysis, a0

ffiffiffiffiffiffiffiffi

1=b
p

� 1
� �

, as shown in Fig. 3.

4 Conclusions

The criterion of crack arrest in brittle materials is discussed by an energy analysis for constant-

K samples. As the crack length increases, the ‘‘released’’ elastic energy exceeds the work of

separation and the dissipation. Thus the ‘‘extra’’ energy must be emitted into the background

from the crack tip in the form of stress waves. When the available energy associated with the

Numerical result 
Regressed curve (Eq. 16) 
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inertial effect decreases to zero, the crack stops. As the ratio of G1=G0 increases to above 3, Ga

decreases to about one half of the work of separation. This conclusion is valid for the cases

where the crack growth rate is below the sound speed, so the requirement of energy conser-

vation, Eq. (6), can be satisfied.
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