SE104 Homework 5

1. For strain measurement, we want to achieve the accuracy of 10^{-6}. For instance, for a 1-cm-long specimen, we need to detect its length change as small as 10^{-6} cm, i.e. 10 nm. Assume the gauge factor (GF) of a strain gauge is 2. By using a Wheatstone bridge, we measure the resistance change of the strain gauge (dR/R) to calculate the strain (dL/L). The smallest electrical resistance change that we can measure is 2×10^{-4} Ohm. (a) How large does the initial resistance of strain gauge (R) need to be, so that our resistance measurement resolution (2×10^{-4} Ohm) is sufficient for the strain measurement? (b) If the strain gauge is made of constantan and the wire thickness is 0.025 mm, how long should the total wire be? Hint: the resistivity of constantan is 49×10^{-8} Ωm. (c) How can this long wire be arranged to measure the average strain of a 1×1 cm small area?

2. A Wheatstone bridge is formed by 1 strain gauge (R_1) and three resistors (R_2, R_3, and R_4). The initial resistance of all of them are the same 120 Ohm. The gauge factor of the strain gauge (GF) is 1.5. The applied voltage (E_i) on the Wheatstone bridge is 10 V. Initially, the bridge is balanced. After the strain gauge deforms, the bridge output (δE_0) is measured as 10 mV. What is the strain?

3. A Wheatstone bridge is shown above. R_1, R_2, R_3, and R_4 are four strain gauges having the same initial resistance 120 Ω. Their gauge factors are 2. They are mounted on a rod. The Young’s modulus of the rod material is 200 GPa and the Poisson’s ratio is 0.3. The rod diameter is 10 cm and its length is 1 m. The rod is subjected to a tensile force. Gauges 1 and 4 are mounted along the axial direction, i.e. the loading direction. Gauges 2 and 3 are mounted along the transverse direction. The applied DC voltage on the bridge $E_i = 10$ V. The bridge output $\delta E_0 = 40$ mV. (a) What is the engineering strain along the loading direction? (b) What is the tensile stress?

4. We have 4 identical strain gauges of the same initial resistance (R) and the same gauge factor (GF). They will be used as R_1, R_2, R_3, and R_4 in a Wheatstone bridge, respectively. We want to measure the tensile strain of a rod subjected to a tensile force. What is the maximum bridge constant (κ) that we can reach? Clearly state your assumptions.

5. Describe at least one method to eliminate the thermal mismatch effect in strain-gauge measurement.

Bonus Question: List two common reasons that may cause failure in strain measurement using strain gauges. Do a literature review if needed.